89 research outputs found

    On the Convergence Speed of Spatially Coupled LDPC Ensembles

    Get PDF
    Spatially coupled low-density parity-check codes show an outstanding performance under the low-complexity belief propagation (BP) decoding algorithm. They exhibit a peculiar convergence phenomenon above the BP threshold of the underlying non-coupled ensemble, with a wave-like convergence propagating through the spatial dimension of the graph, allowing to approach the MAP threshold. We focus on this particularly interesting regime in between the BP and MAP thresholds. On the binary erasure channel, it has been proved that the information propagates with a constant speed toward the successful decoding solution. We derive an upper bound on the propagation speed, only depending on the basic parameters of the spatially coupled code ensemble such as degree distribution and the coupling factor ww. We illustrate the convergence speed of different code ensembles by simulation results, and show how optimizing degree profiles helps to speed up the convergence.Comment: 11 pages, 6 figure

    Massive MIMO: How many antennas do we need?

    Full text link
    We consider a multicell MIMO uplink channel where each base station (BS) is equipped with a large number of antennas N. The BSs are assumed to estimate their channels based on pilot sequences sent by the user terminals (UTs). Recent work has shown that, as N grows infinitely large, (i) the simplest form of user detection, i.e., the matched filter (MF), becomes optimal, (ii) the transmit power per UT can be made arbitrarily small, (iii) the system performance is limited by pilot contamination. The aim of this paper is to assess to which extent the above conclusions hold true for large, but finite N. In particular, we derive how many antennas per UT are needed to achieve \eta % of the ultimate performance. We then study how much can be gained through more sophisticated minimum-mean-square-error (MMSE) detection and how many more antennas are needed with the MF to achieve the same performance. Our analysis relies on novel results from random matrix theory which allow us to derive tight approximations of achievable rates with a class of linear receivers.Comment: 6 pages, 3 figures, to be presented at the Allerton Conference on Communication, Control and Computing, Urbana-Champaign, Illinois, US, Sep. 201

    On Time-Bandwidth Product of Multi-Soliton Pulses

    Full text link
    Multi-soliton pulses are potential candidates for fiber optical transmission where the information is modulated and recovered in the so-called nonlinear Fourier domain. While this is an elegant technique to account for the channel nonlinearity, the obtained spectral efficiency, so far, is not competitive with the classic Nyquist-based schemes. In this paper, we study the evolution of the time-bandwidth product of multi-solitons as they propagate along the optical fiber. For second and third order soliton pulses, we numerically optimize the pulse shapes to achieve the smallest time-bandwidth product when the phase of the spectral amplitudes is used for modulation. Moreover, we analytically estimate the pulse-duration and bandwidth of multi-solitons in some practically important cases. Those estimations enable us to approximate the time-bandwidth product for higher order solitons.Comment: Accepted for ISIT 201

    Scattered EXIT Charts for Finite Length LDPC Code Design

    Full text link
    We introduce the Scattered Extrinsic Information Transfer (S-EXIT) chart as a tool for optimizing degree profiles of short length Low-Density Parity-Check (LDPC) codes under iterative decoding. As degree profile optimization is typically done in the asymptotic length regime, there is space for further improvement when considering the finite length behavior. We propose to consider the average extrinsic information as a random variable, exploiting its specific distribution properties for guiding code design. We explain, step-by-step, how to generate an S-EXIT chart for short-length LDPC codes. We show that this approach achieves gains in terms of bit error rate (BER) of 0.5 dB and 0.6 dB over the additive white Gaussian noise (AWGN) channel for codeword lengths of 128 and 180 bits, respectively, at a target BER of 10−410^{-4} when compared to conventional Extrinsic Information Transfer (EXIT) chart-based optimization. Also, a performance gain for the Binary Erasure Channel (BEC) for a block (i.e., codeword) length of 180 bits is shown.Comment: in IEEE International Conference on Communications (ICC), May 201
    • 

    corecore